首页 >> 甄选问答 >

斐波那契数列公式讲解(斐波那契数列公式)

2023-03-17 18:00:53

问题描述:

斐波那契数列公式讲解(斐波那契数列公式),急!求大佬现身,救救孩子!

最佳答案

推荐答案

2023-03-17 18:00:53

您好,今天蔡哥来为大家解答以上的问题。斐波那契数列公式讲解,斐波那契数列公式相信很多小伙伴还不知道,现在让我们一起来看看吧!

1、这个数列是由13世纪意大利斐波那契提出的的,故叫斐波那契数列。

2、该数列由下面的递推关系决定: F0=0,F1=1 Fn+2=Fn + Fn+1(n>=0) 它的通项公式是 Fn=1/根号5{[(1+根号5)/2]的n次方-[(1-根号5)/2]的n次方}(n属于正整数)补充问题:菲波那契数列指的是这样一个数列: 1,1,2,3,5,8,13,21…… 这个数列从第三项开始,每一项都等于前两项之和 它的通项公式为:[(1+√5)/2]^n /√5 - [(1-√5)/2]^n /√5 【√5表示根号5】 很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

3、 该数列有很多奇妙的属性 比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887…… 还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1 如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了菲波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到 如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值仅供参考。

本文就为大家分享到这里,希望小伙伴们会喜欢。

  免责声明:本答案或内容为用户上传,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。 如遇侵权请及时联系本站删除。

 
分享:
最新文章