首页 > 综合知识 > 正文

多边形对角线条数公式证明(多边形对角线条数公式)

来源:综合知识2024-01-29 12:10:16
导读 您好,今日明帅来为大家解答以上的问题。多边形对角线条数公式证明,多边形对角线条数公式相信很多小伙伴还不知道,现在让我们一起来看看吧!...

您好,今日明帅来为大家解答以上的问题。多边形对角线条数公式证明,多边形对角线条数公式相信很多小伙伴还不知道,现在让我们一起来看看吧!

1、设多边形的边数为n,从它的一个顶点出发引对对角线,除了这点本身、和与它相邻的两个顶点外,与其他的顶点所连接的线段都是对角线,故这样的对角线可引 (n-3)条;n边形有n个顶点,所以可以引 n(n-3)条。

2、又因为n(n-3)条中每条对角线都计算了两次,凸多边形的对角线共有:n(n-3)/2 条,所以凸多边形的对角线公式是n(n-3)/2 条。

3、扩展资料由三条或三条以上的线段首尾顺次连接所组成的平面图形叫做多边形。

4、按照不同的标准,多边形可以分为正多边形和非正多边形、凸多边形及凹多边形等。

5、在平面多边形中,边数相等的凸多边形和凹多边形内角和相等。

6、但是空间多边形不适用。

7、可逆用:n边形的边=(内角和÷180°)+2;过n边形一个顶点有(n-3)条对角线;n边形共有n×(n-3)÷2=对角线;n边形过一个顶点引出所有对角线后,把多边形分成n-2个三角形推论:(1)任意凸形多边形的外角和都等于360°;(2)多边形对角线的计算公式:n边形的对角线条数等于1/2·n(n-3);(3)在平面内,各边相等,各内角也都相等的多边形叫做正多边形。

8、【两个条件必须同时满足】反例:矩形(各内角相等,各边不一定相等);菱形(各边相等,各内角不一定相等)。

9、参考资料百度百科-多边形。

本文就为大家分享到这里,希望小伙伴们会喜欢。

关键词:
版权声明:本文版权归原作者所有,转载文章仅为传播更多信息之目的,如作者信息标记有误,请第一时间联系我们修改或删除,多谢。

猜你喜欢

最新文章